EDB: Layout Components#

This example shows how you can use EDB to create a parametric component using 3D Layout and use it in HFSS 3D.

Perform required imports#

Perform required imports, which includes importing the Hfss3dlayout object and initializing it on version 2023 R2.

[1]:
import os
import tempfile

import ansys.aedt.core

import pyedb

Set non-graphical mode#

[2]:
non_graphical = False

Create data classes#

Data classes are useful to do calculations and store variables. There are three data classes: Patch, Line, and Array.

[3]:
class Patch:
    def __init__(self, width=0.0, height=0.0, position=0.0):
        self.width = width
        self.height = height
        self.position = position

    @property
    def points(self):
        return [
            [self.position, "-{}/2".format(self.height)],
            ["{} + {}".format(self.position, self.width), "-{}/2".format(self.height)],
            ["{} + {}".format(self.position, self.width), "{}/2".format(self.height)],
            [self.position, "{}/2".format(self.height)],
        ]


class Line:
    def __init__(self, length=0.0, width=0.0, position=0.0):
        self.length = length
        self.width = width
        self.position = position

    @property
    def points(self):
        return [
            [self.position, "-{}/2".format(self.width)],
            ["{} + {}".format(self.position, self.length), "-{}/2".format(self.width)],
            ["{} + {}".format(self.position, self.length), "{}/2".format(self.width)],
            [self.position, "{}/2".format(self.width)],
        ]


class LinearArray:
    def __init__(self, nb_patch=1, array_length=10e-3, array_width=5e-3):
        self.nbpatch = nb_patch
        self.length = array_length
        self.width = array_width

    @property
    def points(self):
        return [
            [-1e-3, "-{}/2-1e-3".format(self.width)],
            ["{}+1e-3".format(self.length), "-{}/2-1e-3".format(self.width)],
            ["{}+1e-3".format(self.length), "{}/2+1e-3".format(self.width)],
            [-1e-3, "{}/2+1e-3".format(self.width)],
        ]

Launch EDB#

PyEDB.Edb allows to open existing Edb project or create a new empty project.

[4]:
temp_dir = tempfile.TemporaryDirectory(suffix=".ansys")
aedb_path = os.path.join(temp_dir.name, "linear_array.aedb")

# Select EDB version (change it manually if needed, e.g. "2024.2")
edb_version = "2024.2"
print(f"EDB version: {edb_version}")

# Create an instance of the Edb class.
edb = pyedb.Edb(edbpath=aedb_path, edbversion=edb_version)
EDB version: 2024.2
PyAEDT INFO: Logger is initialized in EDB.
PyAEDT INFO: legacy v0.35.dev0
PyAEDT INFO: Python version 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
PyAEDT INFO: EDB C:\Users\ansys\AppData\Local\Temp\tmpiy6t81tc.ansys\linear_array.aedb created correctly.
PyAEDT INFO: EDB initialized.
[5]:
# Add stackup layers
layers = {
    "materials": {"copper_high_cond": {"conductivity": 60000000}},
    "layers": {
        "TOP": {"type": "signal", "thicness": "35um", "material": "copper_high_cond"},
        "Substrat": {"type": "dielectric", "thicness": "0.5mm", "material": "Duroid (tm)"},
        "GND": {"type": "signal", "thicness": "35um", "material": "copper"},
        "Gap": {"type": "dielectric", "thicness": "0.05mm", "material": "Air"},
        "Virt_GND": {"type": "signal", "thicness": "35um", "material": "copper"},
    },
}
[6]:
edb.stackup.load(layers)
[6]:
True

Create the first patch and feed line using the Patch, Lineclasses defined above.

Define parameters:

[7]:
edb["w1"] = 1.4e-3
edb["h1"] = 1.2e-3
edb["initial_position"] = 0.0
edb["l1"] = 2.4e-3
edb["trace_w"] = 0.3e-3

first_patch = Patch(width="w1", height="h1", position="initial_position")
edb.modeler.create_polygon(first_patch.points, "TOP", net_name="Array_antenna")
[7]:
<pyedb.dotnet.edb_core.edb_data.primitives_data.EdbPolygon at 0x15f2ceb52a0>

First line

[8]:
first_line = Line(length="l1", width="trace_w", position=first_patch.width)
edb.modeler.create_polygon(first_line.points, "TOP", net_name="Array_antenna")
[8]:
<pyedb.dotnet.edb_core.edb_data.primitives_data.EdbPolygon at 0x15f2ceb6ec0>

Now use the LinearArray class to create the array.

[9]:
edb["w2"] = 2.29e-3
edb["h2"] = 3.3e-3
edb["l2"] = 1.9e-3
edb["trace_w2"] = 0.2e-3

patch = Patch(width="w2", height="h2")
line = Line(length="l2", width="trace_w2")
linear_array = LinearArray(nb_patch=8, array_width=patch.height)

current_patch = 1
current_position = "{} + {}".format(first_line.position, first_line.length)

while current_patch <= linear_array.nbpatch:
    patch.position = current_position
    edb.modeler.create_polygon(patch.points, "TOP", net_name="Array_antenna")
    current_position = "{} + {}".format(current_position, patch.width)
    if current_patch < linear_array.nbpatch:
        line.position = current_position
        edb.modeler.create_polygon(line.points, "TOP", net_name="Array_antenna")
        current_position = "{} + {}".format(current_position, line.length)
    current_patch += 1

linear_array.length = current_position

Add the ground conductor.

[10]:
edb.modeler.create_polygon(linear_array.points, "GND", net_name="GND")
[10]:
<pyedb.dotnet.edb_core.edb_data.primitives_data.EdbPolygon at 0x15f2ceb5240>

Add the connector pin to use to assign the port.

[11]:
edb.padstacks.create(padstackname="Connector_pin", holediam="100um", paddiam="0", antipaddiam="200um")
con_pin = edb.padstacks.place(
    ["{}/4.0".format(first_patch.width), 0],
    "Connector_pin",
    net_name="Array_antenna",
    fromlayer="TOP",
    tolayer="GND",
    via_name="coax",
)
PyAEDT INFO: Padstack Connector_pin create correctly

Add a connector ground.

[12]:
edb.modeler.create_polygon(first_patch.points, "Virt_GND", net_name="GND")
edb.padstacks.create("gnd_via", "100um", "0", "0")
edb["via_spacing"] = 0.2e-3
con_ref1 = edb.padstacks.place(
    [
        "{} + {}".format(first_patch.points[0][0], "via_spacing"),
        "{} + {}".format(first_patch.points[0][1], "via_spacing"),
    ],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)
con_ref2 = edb.padstacks.place(
    [
        "{} + {}".format(first_patch.points[1][0], "-via_spacing"),
        "{} + {}".format(first_patch.points[1][1], "via_spacing"),
    ],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)
con_ref3 = edb.padstacks.place(
    [
        "{} + {}".format(first_patch.points[2][0], "-via_spacing"),
        "{} + {}".format(first_patch.points[2][1], "-via_spacing"),
    ],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)
con_ref4 = edb.padstacks.place(
    [
        "{} + {}".format(first_patch.points[3][0], "via_spacing"),
        "{} + {}".format(first_patch.points[3][1], "-via_spacing"),
    ],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)
PyAEDT INFO: Padstack gnd_via create correctly

Define the port.

[13]:
edb.padstacks.set_solderball(con_pin, "Virt_GND", isTopPlaced=False, ballDiam=0.1e-3)
port_name = edb.padstacks.create_coax_port(con_pin)

Display the model using the Edb.nets.plot() method.

[14]:
edb.nets.plot()
PyAEDT INFO: Plot Generation time 0.141
[14]:
(<Figure size 6000x3000 with 1 Axes>, <Axes: title={'center': 'Edb Top View'}>)
../../_images/examples_legacy_pyaedt_integration_03_5G_antenna_example_parametrics_26_2.png

The EDB is complete. Now close the EDB and import it into HFSS as a “Layout Component”.

[15]:
edb.save_edb()
edb.close_edb()
print("EDB saved correctly to {}. You can import in AEDT.".format(aedb_path))
PyAEDT INFO: EDB file save time: 0.00ms
PyAEDT INFO: EDB file release time: 0.00ms
EDB saved correctly to C:\Users\ansys\AppData\Local\Temp\tmpiy6t81tc.ansys\linear_array.aedb. You can import in AEDT.

3D component in HFSS#

First create an instance of the pyaedt.Hfss class. If you set > ``non_graphical = False

then AEDT user interface will be visible after the following cell is executed. It is now possible to monitor the progress in the UI as each of the following cells is executed. All commands can be run without the UI by changing the value of non_graphical.

[16]:
h3d = ansys.aedt.core.Hfss(
    projectname="Demo_3DComp",
    designname="Linear_Array",
    specified_version="2024.2",
    new_desktop_session=True,
    non_graphical=non_graphical,
    close_on_exit=True,
    solution_type="Terminal",
)
PyAEDT WARNING: Argument `designname` is deprecated for method `__init__`; use `design` instead.
PyAEDT WARNING: Argument `projectname` is deprecated for method `__init__`; use `project` instead.
PyAEDT WARNING: Argument `specified_version` is deprecated for method `__init__`; use `version` instead.
PyAEDT WARNING: Argument `new_desktop_session` is deprecated for method `__init__`; use `new_desktop` instead.
PyAEDT INFO: Python version 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
PyAEDT INFO: PyAEDT version 0.14.dev0.
PyAEDT INFO: Initializing new Desktop session.
PyAEDT INFO: Log on console is enabled.
PyAEDT INFO: Log on file C:\Users\ansys\AppData\Local\Temp\pyaedt_ansys_c909c715-080a-4c6c-876b-638773cd0343.log is enabled.
PyAEDT INFO: Log on AEDT is enabled.
PyAEDT INFO: Debug logger is disabled. PyAEDT methods will not be logged.
PyAEDT INFO: Launching PyAEDT with gRPC plugin.
PyAEDT INFO: New AEDT session is starting on gRPC port 54831
PyAEDT INFO: AEDT installation Path C:\Program Files\AnsysEM\v242\Win64
PyAEDT INFO: Ansoft.ElectronicsDesktop.2024.2 version started with process ID 9276.
PyAEDT INFO: Project Demo_3DComp has been created.
PyAEDT INFO: Added design 'Linear_Array' of type HFSS.
PyAEDT INFO: Aedt Objects correctly read

Set units to mm.

[17]:
h3d.modeler.model_units = "mm"
PyAEDT INFO: Modeler class has been initialized! Elapsed time: 0m 0sec

Import the EDB as a 3D component#

One or more layout components can be imported into HFSS. The combination of layout data and 3D CAD data helps streamline model creation and setup.

[18]:
component = h3d.modeler.insert_layout_component(aedb_path, parameter_mapping=True)
PyAEDT INFO: Logger is initialized in EDB.
PyAEDT INFO: legacy v0.35.dev0
PyAEDT INFO: Python version 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
PyAEDT INFO: Database linear_array.aedb Opened in 2024.2
PyAEDT INFO: Cell Cell_HCO7HM Opened
PyAEDT INFO: Builder was initialized.
PyAEDT INFO: EDB initialized.
PyAEDT INFO: Parsing C:/Users/ansys/Documents/Ansoft/Demo_3DComp.aedt.
PyAEDT INFO: File C:/Users/ansys/Documents/Ansoft/Demo_3DComp.aedt correctly loaded. Elapsed time: 0m 0sec
PyAEDT INFO: aedt file load time 0.0167081356048584
PyAEDT INFO: Logger is initialized in EDB.
PyAEDT INFO: legacy v0.35.dev0
PyAEDT INFO: Python version 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
PyAEDT WARNING: AEDT project-related file C:\Users\ansys\Documents\Ansoft\Demo_3DComp.aedb\LayoutComponents\linear_array0\linear_array0.aedt.lock exists and may need to be deleted before opening the EDB in HFSS 3D Layout.
PyAEDT INFO: Database linear_array0.aedb Opened in 2024.2
PyAEDT INFO: Cell Cell_HCO7HM Opened
PyAEDT INFO: Builder was initialized.
PyAEDT INFO: EDB initialized.

Expose the component parameters#

If a layout component is parametric, you can expose and change parameters in HFSS

[19]:
component.parameters

w1_name = "{}_{}".format("w1", h3d.modeler.user_defined_component_names[0])
h3d[w1_name] = 0.0015

Radiation Boundary Assignment#

The 3D domain includes the air volume surrounding the antenna. This antenna will be simulted from 20 GHz - 50 GHz.

A “radiation boundary” will be assigned to the outer boundaries of the domain. This boundary should be roughly one quarter wavelength away from the radiating structure:

\[\lambda/4 = \frac{c_0}{4 f} \approx 2.8mm\]
[20]:
h3d.modeler.fit_all()

h3d.modeler.create_air_region(2.8, 2.8, 2.8, 2.8, 2.8, 2.8, is_percentage=False)
h3d.assign_radiation_boundary_to_objects("Region")
PyAEDT INFO: Boundary Radiation Rad__815WDQ has been correctly created.
[20]:
<ansys.aedt.core.modules.boundary.common.BoundaryObject at 0x15f174b1180>

Set up analysis#

The finite element mesh is adapted iteratively. The maximum number of adaptive passes is set using the MaximumPasses property. This model converges such that the \(S_{11}\) is independent of the mesh. The default accuracy setting is:

\[\max(|\Delta S|) < 0.02\]
[21]:
setup = h3d.create_setup()
setup.props["Frequency"] = "20GHz"
setup.props["MaximumPasses"] = 10

Specify properties of the frequency sweep:

[22]:
sweep1 = setup.add_sweep(sweepname="20GHz_to_50GHz")
sweep1.props["RangeStart"] = "20GHz"
sweep1.props["RangeEnd"] = "50GHz"
sweep1.update()
PyAEDT WARNING: Argument `sweepname` is deprecated for method `add_sweep`; use `name` instead.
[22]:
True

Solve the project

[23]:
h3d.analyze()
PyAEDT INFO: Key Desktop/ActiveDSOConfigurations/HFSS correctly changed.
PyAEDT INFO: Solving all design setups.
PyAEDT INFO: Key Desktop/ActiveDSOConfigurations/HFSS correctly changed.
PyAEDT INFO: Design setup None solved correctly in 0.0h 2.0m 58.0s
[23]:
True

Plot results outside AEDT#

Plot results using Matplotlib.

[24]:
trace = h3d.get_traces_for_plot()
solution = h3d.post.get_solution_data(trace[0])
solution.plot()
PyAEDT INFO: PostProcessor class has been initialized! Elapsed time: 0m 0sec
PyAEDT INFO: Post class has been initialized! Elapsed time: 0m 0sec
PyAEDT INFO: Solution Data Correctly Loaded.
[24]:
../../_images/examples_legacy_pyaedt_integration_03_5G_antenna_example_parametrics_46_1.png
../../_images/examples_legacy_pyaedt_integration_03_5G_antenna_example_parametrics_46_2.png

Plot far fields in AEDT#

Plot radiation patterns in AEDT.

[25]:
variations = {}
variations["Freq"] = ["20GHz"]
variations["Theta"] = ["All"]
variations["Phi"] = ["All"]
h3d.insert_infinite_sphere(name="3D")

new_report = h3d.post.reports_by_category.far_field("db(RealizedGainTotal)", h3d.nominal_adaptive, "3D")
new_report.variations = variations
new_report.primary_sweep = "Theta"
new_report.create("Realized2D")
[25]:
True

Plot far fields in AEDT#

Plot radiation patterns in AEDT

[26]:
new_report.report_type = "3D Polar Plot"
new_report.secondary_sweep = "Phi"
new_report.create("Realized3D")
[26]:
True

Plot far fields outside AEDT#

Plot radiation patterns outside AEDT

[27]:
solutions_custom = new_report.get_solution_data()
solutions_custom.plot_3d()
PyAEDT INFO: Solution Data Correctly Loaded.
[27]:
<ansys.aedt.core.visualization.plot.matplotlib.ReportPlotter at 0x15f173f8c10>
../../_images/examples_legacy_pyaedt_integration_03_5G_antenna_example_parametrics_52_2.png

Plot E Field on nets and layers#

Plot E Field on nets and layers in AEDT

[28]:
h3d.post.create_fieldplot_layers_nets(
    [["TOP", "Array_antenna"]],
    "Mag_E",
    intrinsics={"Freq": "20GHz", "Phase": "0deg"},
    plot_name="E_Layers",
)
[28]:
<ansys.aedt.core.visualization.post.field_data.FieldPlot at 0x19fc7d8aec0>

Close AEDT#

After the simulation completes, the application can be released from the :func:ansys.aedt.core.Desktop.release_desktop method. All methods provide for saving the project before closing AEDT.

[29]:
h3d.save_project(os.path.join(temp_dir.name, "test_layout.aedt"))
h3d.release_desktop()
PyAEDT INFO: Project test_layout Saved correctly
PyAEDT INFO: Desktop has been released and closed.
[29]:
True

Clean up the temporary directory#

The following command removes the project and the temporary directory. If you’d like to save this project, save it to a folder of your choice prior to running the following cell.

[30]:
temp_dir.cleanup()