MinClearance#
- class pyedb.workflows.drc.drc.MinClearance(*, name: str, value: str, net1: str, net2: str)#
Minimum clearance between two nets.
Methods
MinClearance.construct([_fields_set])MinClearance.copy(*[, include, exclude, ...])Returns a copy of the model.
MinClearance.dict(*[, include, exclude, ...])MinClearance.json(*[, include, exclude, ...])MinClearance.model_construct([_fields_set])Creates a new instance of the Model class with validated data.
MinClearance.model_copy(*[, update, deep])!!! abstract "Usage Documentation"
MinClearance.model_dump(*[, mode, include, ...])!!! abstract "Usage Documentation"
MinClearance.model_dump_json(*[, indent, ...])!!! abstract "Usage Documentation"
MinClearance.model_json_schema([by_alias, ...])Generates a JSON schema for a model class.
Compute the class name for parametrizations of generic classes.
MinClearance.model_post_init(context, /)Override this method to perform additional initialization after __init__ and model_construct.
MinClearance.model_rebuild(*[, force, ...])Try to rebuild the pydantic-core schema for the model.
MinClearance.model_validate(obj, *[, ...])Validate a pydantic model instance.
MinClearance.model_validate_json(json_data, *)!!! abstract "Usage Documentation"
Validate the given object with string data against the Pydantic model.
MinClearance.parse_file(path, *[, ...])MinClearance.parse_raw(b, *[, content_type, ...])MinClearance.schema([by_alias, ref_template])MinClearance.schema_json(*[, by_alias, ...])MinClearance.update_forward_refs(**localns)MinClearance.validate(value)Attributes
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].